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In this paper, we propose an optimized field/circuit coupling approach for the simulation of magnetothermal transients in
superconducting magnets. The approach improves the convergence of the iterative coupling scheme between a magnetothermal
partial differential model and an electrical lumped-element circuit. Such a multi-physics, multi-rate and multi-scale problem requires
a consistent formulation and a dedicated framework to tackle its challenging transient effects occurring at both circuit and magnet
level during normal operation and in case of faults. We derive an equivalent magnet model at the circuit side for linear and non-linear
settings and discuss the convergence of the overall scheme in the framework of optimized Schwarz methods. The efficiency of the
developed approach is illustrated by a numerical example of an accelerator dipole magnet with accompanying protection system.

Index Terms—Convergence of numerical methods, coupling circuits, eddy currents, iterative methods.

I. INTRODUCTION

Superconducting magnets produce high magnetic fields used
in high-energy particle accelerators to control the trajectory of
beams of particles. In order to reach the superconducting state,
they are operated at very low temperatures (1.9 K) and are
prone to quench, that is, become resistive. This may result
in catastrophic damage in the magnet and circuit. Quench
protection systems such as the coupling-loss induced quench
system are affecting both a magnet and the circuit and their
mutual influence has to be carefully studied. Thus, field-circuit
coupling is inevitable.

In [1], various approaches of field and circuit coupling have
been put into the context of waveform relaxation methods [2].
This paper interprets the coupling conditions in terms of
optimized Schwarz methods, e.g. [3]. In contrast to prior works,
e.g. [4], no numerical optimization is carried out. Instead a
new series expansion of the operator is proposed. This allows
a better understanding of existing methods and opens the
door for higher-order ‘transmission conditions’ as known from
domain decomposition. The effectiveness is demonstrated by a
a simulation of CERN’s quench protection system.

Starting from Maxwell’s equations and assuming a magne-
toquasistatic (MQS) setting, the partial differential equation

∇× (ν∇× ~A) +∇×
(
νsτeq∇×

∂ ~A

∂t

)
= ~χsi (1)

is obtained on a domain Ω. The eddy currents are taken into
account in the coil domain Ωs by an homogenization model [5],
[6] using the (nonlinear) time constant τeq. ~A is the magnetic
vector potential, ν and νs the nonlinear reluctivity and i the
lumped currents through each coil. Finally, ~χs is the stranded-
conductor winding function, such that the current density ~Js =
~χsi. The field equation (1) is coupled to a circuit via

v =
d

dt
Ψ, with Ψ = λ

∫
Ω

~χs · ~A dΩ, (2)

where λ is a symmetry factor if Ω is only representing a
fraction of the full model. The temperature on Ωs can be
obtained by solving the heat balance equation.

Finally, the equations describing the behavior of the circuit
can be written in an abstract form as the following system

A
dx

dt
+ B

(
x,R

)
x + Pi = f(t) (3)

P>x− v = 0, (4)

where R depends on the coil temperature. In the case of
modified nodal analysis (see [7]) the degrees of freedom
x contain node potentials and currents through branches of
voltage sources and inductors.

II. WAVEFORM RELAXATION

Following [1], waveform relaxation is used to simulate the
coupled problem, the field-thermal part is simulated separately
from the circuit. As in [3], [4], the waveform relaxation scheme
is studied from the point of view of an optimized Schwarz
method. Let us rewrite the (linearized) system in frequency
domain and add iteration counters for a Gauss-Seidel scheme.
The field-circuit problem is given by

Ajωx(k+1) + Bx(k+1) + Pi(k+1)
c = g(ω) (5)

v(k+1)
c = P>x(k+1) (6)

v(k+1)
c = v(k)

m (7)

and the second system (MQS) representing the spatial dis-
cretization of (1-2) as e.g. obtained by Finite Elements

Ksjωa(k+1) + Kνa
(k+1) = Xi(k+1)

m (8)

λX>jωa(k+1) = v(k+1)
m (9)

i(k+1)
m = i(k+1)

c . (10)



For the optimization of convergence, the first transmission
condition (7) is generalized to the linear combination

v(k+1)
c = αi(k+1)

c − αi(k)
m + v(k)

m . (11)

A contraction factor ρ(α) < 1 can be computed, such that

||v(k+1)
c − v(k)

c || = |ρ(α)| ||v(k)
c − v(k−1)

c ||.

Optimal convergence is attained for ρ(α) = 0, that is

α = Z(ω) = jωλX>(Ksjω + Kν)−1X,

which is the impedance of the magnetoquasistatic system. For
small frequencies, the inverse can be expanded as a Neumann
series. The lowest order term can be used as an approximation

Z(ω) ≈ jωL := jωλX>K−1
ν X. (12)

This leads to the optimized transmission condition

Ψ(k+1)
c = Li(k+1)

c − Li(k)
m + Ψ(k)

m , (13)

with the magnetic flux linkage Ψ? = 1
jωv?. This special case

corresponds to considering the field model in the circuit as an
inductance with a correction term as already proposed in [8].
For nonlinear cases, we propose a new simplified procedure:
the differential inductance

Lm = λX>
(

d

da

(
Kν

(
a
)
a
))−1

X (14)

is extracted at a working point am and is kept constant for the
subsequent waveform relaxation.

The described method is illustrated with a numerical ex-
ample of the single aperture dipole magnet D1 [9]. The
field and thermal equations are discretized using COMSOL
MULTIPHYSICS R©. All parameters are defined as specified in
[9]. We consider the magnet operating at 5 kA and discharged
by a resistor REE = 0.1Ω. The circuit is modeled and simulated
in ORCAD PSPICE R©. The co-simulation was established
with CERN’s in-house coupling tool STEAM (Simulation of
Transient Effects in Accelerator Magnets) [10].

To analyze the influence of the inductance estimation on
the waveform relaxation convergence, the (scalar) differential
inductance (14) is multiplied by a scaling coefficient kL.

Fig. 1 shows the number of iterations needed to obtain a
sufficiently accurate solution (error < 10−3). For kL = 0.9
the convergence is obtained in the least number of iterations,
as inter-filament coupling losses dissipate the magnetic energy
in the coil due to the decrease of the effective differential
inductance. On the other hand, the case of kL = 0.5 requires
up to 16 iterations instead of the optimal 2 iterations if ρ = 0.

III. CONCLUSION

This paper has discussed multiphysyical field/circuit wave-
form relaxation for the specific eddy-current model used in
quench simulation. A new polynomial series expansion has
been proposed to speed up convergence. Numerical simulations
of an aperture dipole magnet underline the importance of
an optimization of the coupling conditions, as iterations per
window could be significantly reduced. The full paper will
feature a rigorous analysis of the Neumann series and more
simulation results.
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Figure 1. Convergence comparison of the first 3 time windows
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